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Radiation from Curved Dielectric Slabs and Fibers

LEONARD LEWIN, ASSOCIATE MEMBER, IEEE

Abstract—The form taken by the radiation condition in the local
coordinate system, pertinent to the determination by perturbation
methods of the radiation from curved radiating structures, is not
the same as it is at very great distances. Specifically, it may contain
a term that appears as if it were an incoming or growing wave, A
detailed analysis is made of the appropriate form of the condition
in cylindrical and toroidal systems, and is applied to the calculation
of radiation from curved dielectric slabs and fibers.

I. INTRODUCTION

WITH the introduction of glass fiber as a communica-
tion medium, it became necessary to understand
and predict the radiation loss or leakage due to bending,
with a view both to finding methods of reducing or pre-
venting it, and to- determining limits on bending for a
given loss.

Mareatili [1] investigated the effects of bending of a
dielectric slab in cylindrical coordinates using a method
that was basically rigorous, though depending on mathe-
matical asymptotic expansions at a later stage. The same
method was applied to obtain an approximation to the
leakage from a bent light guide of rectangular cross section.
However, this process is not applicable to toroidal co-
ordinates and the curved dielectric fiber.
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The author is with the Department of Electrical Englneerlng,
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One method of treating radiation from curved structures
is to attempt a perturbation analysis, treating the curva-
ture as a small perturbation to the straight configuration.
In so doing one is immediately concerned with matching
fields at the structure surface, and hence, with the form
of the radiation condition to be applied there. The dif-
ficulty arises from the fact that the perturbation analysis
presents the field in local coordinate form and the range
for which it is valid is limited to dimensions of the order
of the size of the structure—in the present case, the
bending radius. Since the radiation condition has to be
applied at “infinity,” i.e., at a distance much greater than
the bending radius, the local coordinate form is quite
useless. The radiation condition has to be inferred by an
indireet process before it can be applied. It needs to be
stressed that an “outward-looking” wave in the local
coordinates is not necessarily (and in general, is not) the
appropriate form to satisfy the radiation condition at
very large distances. Thus the outgoing Hankel function
H,?(kp) behaves like an outgoing wave when kp > »,
but looks more like-a sum of a growing and an evanescent
wave when kp is small. To require only the evanescent
term would be erroneous.

Since the cylindrical coordinate solution can, in any
case, be set up rigorously, it might be asked what purpose
is served by first using it to determine the radiation con-
dition, and then applying this condition to a perturbation
analysis. The advantage is threefold. It gives a better
insight int6 what is going on, and may therefore indicate
ways of controlling the radiation. Moreover, to get an
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analytic solution, asymptotic methods must in any case
be applied, and this is readily done in the perturbation
solution whose development depends on just such an ex-
pansion. And finally, it points the way to treating the far
more difficult case of the optical fiber, for which no such
solution exists. The natural coordinate system for the
curved fiber would be a toroidal system, but no convenient
solution of the Helmholtz equation exists there; neither is
there any equivalent of the known asymptotic expansion
of the Hankel function for that system.

We shall therefore briefly discuss the perturbation
solution for the curved dielectric slab, using the rigorous
formulation to get the radiation condition, and then
proceed to a determination of the local form of the radi-
ation condition in toroidal coordinates before solving the
curved optical fiber case by a perturbation method.

II. CURVED DIELECTRIC SLAB—RADIATION
CONDITIONS

Fig. 1 shows a dielectric slab of thickness b whose
axis is bent to a radius of curvature Ro. The inner and
outer radii are By = Ry — b/2 and R. = Ry + b/2. A
cylindrical coordinate system p,¢ permits seeking solutions
varying as exp (—jv¢). Since ¢ = s/R,, where s is the
axial coordinate, we can interpret »/Ry = k' as the propa-
gation constant around the slab. A local coordinate y,
measuring position across a transverse section, is defined
by » = Ry + ¥, so that field matching is performed at
boundaries at y = £b/2.

It is important to assess the order of magnitude of ».
If ko is the propagation constant of the empty space out-
side the dielectric, and e, is the relative dielectric constant
of the slab, then we expect k' to lic between ko and k; =
ko2, for the dominant mode. Since the field for p > Ro +
b/2 will involve exp (—jre)H,? (kop), we see that,
near the slab, kop/v ~ koRo/k’'Ry, which is of the order of,
but less than, unity. Similarly, for p < Bo — b/2 the field
will involve exp (—jv¢)J,(kop). Inside the slab, both
J.(kip) and Y,(kip) are utilized. Since Ry, and hence »,
will be large for small curvatures, we shall be interested in
asymptotic expansions of Bessel functions with order of
the same magnitude as the argument. Specifically, for
p > R, the field will involve H,® = J, — jY,, while for
p < Ri the relevant form is J, only, since the field has to
be finite at p = 0. Thus the field external to the slab takes
different forms according to which surface is involved.

Debye’s asymptotic expansions {27] can be put in the
form

Fig. 1. Curved dielectric slab.
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(2mv) 12T, (v2) ~ exp [—uf(2) J(1 — 2%)~® (1)
(209)12Y, (v2) ~ —2 exp [+2f(2) J(1 — 22)701 (2)

where
f(2) = taph™ (1 — 22)12 — (1 — 2%)12 (3)

and z is less than unity.
If we take vz = ko(Ro + ), with y < R, we can expand
f(2) to first order about zo = kol2o/» to obtain

—uf(2) = —vf(kRo/v) + y (kK" — k). (4)

Hence, for y less than —b/2, where only J, is needed, the
external field is represented solely by an evanescent wave,
as might have been anticipated. But for y > + b/2,
both J, and —jY, are needed to give H,®, and their
relative proportions are seen to be given by the combi-
nation

1
exp [—y (k" — k)] + 97 XP [ —2uf (koRo/v) ]

-exp [+ y(k”? — k?)2]. (5)

Expression (5) is the equivalent of the radiation condition,
an outgoing wave at infinity, in local coordinate form. In
addition to the expected evanescent term there is a
(small) growing term. Of course, (5) is only valid for
a range of y limited by R, so the growing term does not
grow indefinitely. But failure to include it in (5) neces-
sarily leads to errors, and in fact leads to a prediction of no
radiation at all! This is somewhat analogous to the use of a
sinusoidal approximation to the current on a linear
antenna, for which the examination of the corresponding
input impedance leads to the conclusion that the arrange-
ment is nonradiating. Nevertheless, by utilizing the
Poynting vector at infinity, a sensible first-order approx-
imation to the radiation can still be obtained, and Marcuse
[3] has performed the equivalent calculation for the
dielectric slab. Similarly to (5) he finds an asymptotic
expression for the Hankel function, but limited to only
the first decaying term; and _he relates this field form to
that in a straight slab. By comparison with known results
the amplitude of the field for a given power flow is thus
obtained. Then, by using the form of the Hankel function
for very large arguments, the far field, and hence, the
radiation from the slab, is deduced; and finally the
attenuation is found from the radiation and power flow.
This ingenious method does not require the growing
component of (5). But unfortunately the process cannot
be used for the curved fiber because of the absence of any
known corresponding solution to the wave equation in
toroidal coordinates.

III. CURVED DIELECTRIC SLAB—
PERTURBATION SOLUTION

As already mentioned, a rigorous solution is possible in
this case. If fields are derived from a magnetic component
H, = exp (—jvp)J, (ko) for p < Ri, with corresponding
forms for Ry < p < Rs: and p > R. and the tangential
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field components are matched at p = Ry and R, then the
following equation, which is essentially an equation for »,
can be derived:

(kR (kiR1) — V3T, (ki) (kol?y)
J,(keRY) Y, (liRy) — &30, (koR1) Y, (KaRRy)

H,® (koRa)J,' (kiRs) — &2, (kuRo) H,®' (kolRs)
H,® (koR2) ¥, (kuRz) — €2, (knRo) H,®' (oRs)

(6)

The needed solutions are for » large and complex. There is
no known analytic solution to (6), though Marcatili used
asymptotic expansions to obtain an approximate solution
for small curvatures. Dang [4] has produced a computer
program for solving (6) numerically, based on a calcu-
lation of the Bessel functions through a numerical evalu-
ation of Hankel’s integrals. Since » will often involve
only a small imaginary part, very high accuracy in the
computations is necessary to calculate the attenuation
accurately. The results can be compared to the perturba-
tion solution, but differences may be difficult to interpret,
due to the limited accuracy of the numerical compu-
tations.
To obtain a perturbation solution we put

H, = exp (—jk's) H = exp (—jk's)[Ho + H1/Ro
+ Hy/R¢* + - -]

E = k/[1+ Bb/Ro+ «+-] (7)
and define ‘
7 = ke — ko
0% = ko2 — ket
0 = by/2. (8)

In local coordinate form the Helmholtz equation becomes
?H 1 y \ 0H
1+ ) S (14 L)
( 0 0 Ro ay

(1 L) ween —we]E =0 @)

where €. or 1 is taken, depending on whether or not the
field is being considered inside or outside the slab.
For the zero-order solution we get the equation

aHo

+ [k (e 1) — ko ]H, = (10)
The solution, in the three regions, can be written
Hy, = (cos @ — A sin 0) exp [6(y + 5/2)], y < —b/2
= cos vy + A sin vy, —b/2 <y <b/2
__cosf + Asiné
= T K {exp[—d(y — b/2)]
+ Kexp[o(y —b/2)]}, y>b/2 (11)

where, from (5),
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o+ ko'
K = —%jexp {6b — 2R, [ko' log 4]; L a]
0
e
— 2Byky'b log o+ "}. (12)

The term in K in the third expression of (11) represents
the effect of the radiation condition, as applied to the
dielectric slab; in its absence, the present method yields
zero radiation. In the above forms, H, has been matched
at the two boundaries. The B; term appears in (12)
because » = ko' (Ro + bBy), to first order, and the contri-
bution is therefore 0(1) if B; itself has a significant
magnitude.

The E, component is proportional to (1/¢) (6H./dy),
and on matching at y = +b/2 we get two further equa-~
tions, from which the constant A can be eliminated to
yield the secular equation

tan?§ + tan [ (K — 1)A + (K+ H/A]J—1=0 (13)

with A = 3/7.

For small K the solution of (13) corresponding to the
symmetrical mode in the straight slab is approximately
given by (1 4+ K) tan § = A. This equation can be
solved, for small K, in terms of the solution ke’ correspond-
ing to K = 0. It gives ko’ = ko' + KL where

€ 2v%6

L = .
€ — 1 (26,]002 + ]{}00’25017)](300’

(14)

and v, and 8, come from writing ke’ for ko' in (8). In this
relation kg’ is the solution obtained from

tan (b70/2) = Grao/"Yo.

In calculating K it is sufficient, to this order of accuracy,
to use dp and v, in (12).

In order to complete the solution we need B As it
happens, B; turns out to be neglible, and it can be ignored
in (12), so that (14) does give ko without more ado.
However, this feature is far from obvious, and there seems
to be no way of demonstrating it other than solving the
next higher order equation. This can be obtained from (9),
from a consideration of the coefficient of 1/R,, in the form

(')Hl f‘)Ho

(15)

>+ [k (e,1) — ko ]H, =

+ ]C0’2H0(B] —_ 2y>

(16)
The solution can be written
Hy = cosfexp [6(y + b/2) JLC + y(B1 + ko*/8ko?)
—y2Jko'?/ 26, y < —b/2
= — (kee;/2v*)y cos vy + (ko'*/2v) (D + By — y?)
+sin vy, —b/2 <y <b/2

(cos 0ko'2/28) (exp [—8(y — b/2) ]
“{y? — y(Br — k?/0ko'®) ] + Flexp [—6(y — b/2)]
+ Kexp[o(y —b/2)1}), y>b/2 (17)
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with constants By, C, D, and F to be determined by match-
ing H, and E, at the two boundaries. Use has been made
of the radiation condition in local form in determining the
form of the terms in C and F.

The calculation of B; in this way is lengthy but straight-
forward, and gives B, = KB where

5r52|:(1 + X) (512 - X72/62) + 6,352/190,2]/4)(
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“axial” fields are E; and H,. The coordinates are inter-
related by
psiny

r=Rsind = By + pcosy.

i

2= Rcos@
(20)

The space can be divided into the two regions r < R, and

(18)

B

and
X = 6b(€1-52 + kol)/2k02,

Thus B; contains a factor K, and since K exponentially
decreases with Ry, B; approaches zero for large Ry, and its
effect on (12) is usually negligible. Since » = k'Ry =
ko' (Ro + bB1) to first order in 1/R,, we get, to first order
in K and 1/R,,

k' = ko' + K(L + Bko'b/Ry). (19)

L and B are given by. (14) and (18). To take the approxi-
mation further would be extremely tedious, but (19)
should be accurate, even for quite modest values of R.
Thus with Ay = 1 em, b = 0.4 mm, ¢, = 4, and By = 5b
the value of » is found as 21.06-70.0001. The corresponding
value from Dang’s computation is 20.89-70.00004. The real
parts are quite close, but the imaginary parts, which give
the attenuation, are too small to compare accurately.
A closer agreement is obtained with a very leaky second-
order mode with b = 0.8 mam and B, = 2b. The two values
are, respectively, 11.628-5.064 and 12.410-55.139. For
comparison, the first~order mode in this case has the
imaginary parts of » calculated as 8.10~% and 5.10-%, re-
spectively.

IV. RADIATION CONDITION FOR A TOROIDAL
STRUCTURE

Fig. 2 shows the toroidal geometry upon which three
different coordinate systems have been erected. Spherical
coordinates R,8,¢ are used in the investigation of the
behavior at infinity. Cylindrical coordinates r,¢,2 are
used to construct an exact and suitable solution to the
Helmholtz equation. Local coordinates are p,¥,s and
they approximate to cylindrical coordinates when the
radius of the torus R, is very large. Note that the “axial”
coordinate along the torus is s = Ro¢, so that the relevant

\4

t
|
|
_ \9&

| s

Fig. 2. Toroidal coordinates.

T X[(er — 1) (e — %) + K{7* — e(er — Dko?}] + elho?(er — 1) + Kv?]

r > Ro. In the inner region the field must be finite at » = 0-
In the outer region the field should look like an outgoing
wave as r — . Outward going waves in the 4=z direction
imply sources at z = 0, so that forms like exp (—ju |2 |)
will be involved in setting up solutions. The outer region
can therefore be considered by restricting ¥ to the range
0 to =/2, since the symmetry due to the use of | z| will
cover the —x/2 to 0 range. Our aim is to develop a field
which satisfies Maxwell’s equations, behaves correctly at
infinity and at the origin, and which can be developed
on the torus to give a dominant term of the form
exp (—jk's) Kulkp(v2 — 1)12] cos my, this being the
form of solution for a straight cylinder. Any “correction”
terms to this form will be interpreted as the local structure
of the radiation condition, in much the same way as was
done for the extra term in (5).
We make the following definitions and observations:

k propagation coefficient in the space outside the
torus;

k' propagation coefficient around the torus (¥’ > k
for a wave on a dielectric rod) ;

v = k'Ry, giving v = k's. As By — oy — o;

y=k/k >1 T = (1—- 1" (- D" =
[ 42 — 1|2 exp (—78) with § > 0;

B = sinh™! (42 — 1)=02, 8 = g, + jB,, giving tan §; =
tan 6 tanh 8,, whence 8; < é.

Il

From the form of the solution to the wave equation in
cylindrical coordinates, we can build up a field which
satisfies the Helmholtz equation and which is suitable to
represent conditions in the toroidal geometry. After a
considerable amount of searching the following structure
was developed:

o078
— exp (—jve) / cosh ma

E, =
—oo—-30
-exp [ —jkp(y? — 1) sin ¢ sinh z]
kR TLI, (ERoT) K,/ [k(Ro + p cos ) T, ] dz,
0<y<a/2 (21)
where

T, = [(y* — 1) sinh? z — 17,

This form is based on the spectral component exp (—jv¢) -
exp [—ju|z| JH@ [r(k* — w2)'%], in which various
changes of variables, including those in (20), have been
made. The various functions that appear in (21) have
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been chosen to give an outgoing wave at infinity, and an
appropriate field at the torus, as will be demonstrated in
the ensuing paragraphs.

The contour of integration is shown in Fig. 3(a).
The integrand possesses branch cuts at T'. = 0, or x =
=+ 8.

In order to demonstrate that (21) represents an out-
going wave, we transform to spherical coordinates, using
(20), and take a new variable defined by (y* — 1)¥2
sinh £ = —j sinh y. Near the origin this gives y ~
jly2 — 1)1z Since arg (y? — 1)¥2 = —§, we get y =
+ (—o + jr/2) at ¢ = £ (o 4 j§), and the contour
for y becomes as shown in Fig. 3(b). The branch cuts are
at y = =+ jx/2 and are not encountered. Equation (21)
becomes

w—jir/2
Ey, = — exp (—jvd) / exp (—kR cos 8 sinh y)

—aotjrf2
<H,®'(kR sin 0 cosh y)J, (kR cosh y)
-[#kR, cosh? y cosh mz/2(v* — 1)Y2 cosh z] dy.
(22)

For large R we can approximate the Hankel function by

exp {—j[kR sin 8 cosh y — vxr/2 — «/41}(2/7kR sin 8

cosh y)¥2. The variable part of the total exponent is thus
—jkR[cosh y sin § — j sinh y cos 8] = —jkR cosh (y +
70 — j=x/2). Since 0 < 8 < =/2 in the region considered,
we can move the ¥ contour to run horizontally through the
point j(w/2 — 8), and on writing y’' = y + j8 — jx/2 we
get the modified exponent —jkR cosh y’. For large R the
method of stationary phase gives its contribution from
integration at y’ = 0, and with the factor R~(/? already
derived from the Hankel function we get a total variation
with B of the form exp (—jkR)/R. This verifies the out-
ward-going character of (21) at infinity. It remains to
find its form in the neighborhood of the torus.

Lemma: Let v be large, z and b finite, and let a function
F,(2) possess the asymptotic expansion, for large »:

F,(v2) = exp [4f(2) + g(Z)]{l + ﬁ—(fl +0 (%)} . (23)

Then using Taylor’s expansion we get

F,(vz + b2)
F,(v2)
(24)
Take F,(vz) = —(2v/7)"2K,’(v2) and use Debye’s ex-

pansion [27] for which

1+ (1+22)e
k4

f(z) = log — (L4
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(a) Contour of integration for z. (b) Contour of

Fig. 3.
integration for y.

g(z) = (1/4) log (1 + 2%) — logz.

Then
K, (vz + b2)
K, (v2)
=exp[—b(1 + z2)”2]{1 +2 [——1
2 | (1 + )

b(2 + 22)] (1 )}
- —— ol—=); - 2
14 22 + v (25)
The term in 1/» is finite and approaches zero as » — .
It will be ignored here, since we are only interested in
results for large ».
In a similar way we get

vy + by) [T (vy) ~exp [b(1 — ¢?) 2], 92 <1
Y)/(oy +by) /Y, (vy) ~exp [-b(1 — )],  o* <L
(26)
Also,
T~ yexp [-24(0)] (27)
where
f(y) = tanh™ (1 — y2)¥2 — (1 — y?)*2. (28)
And finally we have
K, (v)I,(vz2) ~ —1/2v2, 2> 0
Y, () (vy) ~ 1/mvy, y<1. (29)
It follows from these results that for z real we have
eI, (p2) K, (vz 4 bz) ~ Lexp [—b(1 + 22)27].  (30)

But for 7 imaginary = jy, we use
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K/ (jy) = = % exp (—jom/2) H' ()

and get
—vel,(v2) K, (vz + b2) ~ 3{exp [—b(1 — y2)¥?]
+ %7 exp [~ 2uf(y) Jexp [b(1 — y2)*2]}.  (31)

It will be noticed that the first term is just the continu-
ation of the function in (30) for imaginary z. The second
term is additional, and only appears in that part of the
range of z for which z is imaginary. As we shall see, its
effect 1s to give inward or growing waves in the local
coordinate system.

In (21), take vo = ER¢T., bz = p cos YT, Then z is
real for 22 > £2, and imaginary for x2 < §%. Applying (31)
to (21) we get, for large R,

00+
Ey = Ey+ Es =~ % exp (—jvd) f cosh mx

0038

cexp [ —kp(¥? — 1)¥2 (cosh 2 cos ¢
4+ jsinh o sin ¢) 1 de + (j/4) exp (—jve)

8
. / cosh mx exp [kp(y® — 1)Y2(cosh x cos ¢
-8

—j sinh z sin ¢) Jexp (—2vf,) dx (32)

where

f. = tanh™! (T cosh z) — T cosh «, T = (1 — 1/4)

E: can be evaluated by noting that the exponent can be
written as cosh (z 4 7¥), and if we take z + j¢ = u the
integral becomes

o7 (P+90)
Ei = Yexp (—jvo) f cosh [m (v — j¥)]

— o0~ j(Y~8)
cexp [—kp(y* — 1)"2 cosh u ] du. (33)
Since arg (v — 1)¥2 = —§, the integrand is convergent
at both limits for 0 < ¢ < #/2. Moreover, (33) has no

singularities so the contour can be displaced to the real
u axis. Hence,

E:

3 exp (—jve) / (cosh mu cos my — j sinh mu

-sin my) exp [—kp(y? — 1)2 cosh u] du
exp (—jvd) Ku[kp(v* — 1)12] cos my.

To within terms of order 1/» = (k’Ry)~* this is the struc-
ture to be expected, and justifies the form chosen for the
various factors used in setting up (21).

Had j sinh mx been used instead of cosh mz, cos my in
(34) would have been replaced by sin my.

It remains to examine the form of E., and it is seen from
(32) that the integrand is completely dominated by the
term exp (—2uf.), which has its greatest value when
f= i a minimum, which occurs at z = 0. Elsewhere it de-
creases rapidly, to zero at the limits. Hence, a saddle

(34)
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point ealculation around z = 0 is sufficient and yields, on

expanding the remaining exponent as a sum of modified
Bessel functions:

B (j/4) 2 ealu[kp(v? — 1)Y2] cos g
0
cexp [—2v(tanh—' T — I‘)]/ cosh mr
( pa?3
exp T

ccos ny exp [—2»(tanh™! T — T') |(w/kRy)\/?

 (y2 — 1)=6

)dx ~ (4/4) i enlu[kp(v? — 1)12]

(35)

where ¢ = 1,¢, = 2 forn > 0.

If instead of cosh mx we had used j sinh mz, we Would
have gotten E, = 0, to order 1/», for the corresponding
integral.

Define the small quantity o by

o = (j/4) exp { —2kRo[y tanh™! (1 — 1/4%)%2

~ = () e = v 6o
Then the local form of the field component E,; (the same
holds for Hy) is
1) exp (—jvd) Knlkp(v* — 1)'*]sinmy 4 o0(7")
2) exp (—jv) {(Kulkp(v* — 1)2] cos my

0

+ o X el [ko(y? — 1)V2] cos my ).

[

(37)

The radiation condition therefore gives, to this order of
approximation, no additional term for modes odd in ¢.
For modes symmetrical about ¢ = 0 it is seen that the
radiation condition involves not only an I, term of
magnitude oe,, but also a train of coupled modes; in much
the same way as a propagating mode on a periodic struc-
ture is accompanied by a set of spatial harmonics, all
propagating together with the phase of the main mode.
The field forms considered so far have been limited to
0 < ¢ < x/2. Inside the cylinder r = R, we require a form
that is finite at the origin, and gives E, continuous at

¢ = x/2. By inspection we get, as a dominant contribu-
tion,

00458
Ey = — exp (—jve) / cosh mz

—co—j8
-exp [—jkp(v2 — 1)V2sin ¢ sinh z — jmw JkRoT»
AL [k(Ro + p cos ¢) T 1K, (kRoT)
-1, (kRoT,) /I (kR T2) } du, /2 < ¢ <.

It is clear, from comparison with (21), that Es is contin~
wous at ¢ = /2, since they both reduce to the same ex-
pression when m is even. When m is odd the continuity

(38)
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is not so obvious, and to demonstrate it, and also to show
why the factor exp (—jm=) is included in (38), we con-
sider the equivalent to (32) and (33). We get, analo-
gously to (33),

o5 (T—Y+8)
B = texp (—ju) [ cosh [m(u = jr + )]
—oo+4-j(r—y—9)

cexp [ —kp(y* — D)V2coshu — jmzx]du. (39)

Since, now, (w — ) lies between 0 and 7/2, we get the
same result as (34); and this is what is required, since the
full range of ¢ must be covered. When m is odd the two
fields are each zero at ¢ = w/2, from (34), so that con-
tinuity is in any case maintained in this case too. The
formula for E» becomes, for r < Ry,

8
E; ~ (j/4) exp (—jvo) / cosh mz
-8

cexp [kp(v* — 1)¥?[cosh 2 cos y — j sinh z sin ¢ ]

— gmw ] exp (—2uf,) dx. (40)

This contribution comes via the term in K, in (38), since
it is replaced by the H,®’ form in this range. When com-
bined with the exponent from the first 7,’ function, (40)
is obtained, and agrees with (32) for m even. For m odd
(40) is of the wrong sign, and hence, for continuity, a
small additional term FE; needs to be added to (38). Its
value is found to be

8
By = —jh(cosmr — 1) exp (~jog) [ coshma
) —B

-exp [ —jkp(y? — 1)V2sin ¢ sinh ]
«wkRoT o], /[k(Ry 4 p cos ) To 1, (kRoT.) da

where

(41)

T.=[1— (2 — 1) sinh? ]2

Note that it is always possible to add a term of this
character, since it is finite at the origin; hence, a unique
radiation condition at the torus cannot be found from a
consideration of fields in r < R,. But for r > R, the radi-
ation condition at infinity uniquely gives (32). The need
for the term in (41) then follows in order to match at
¢ = /2. Its value is, of course, very small, since the
asymptotic expansion of J,'J, gives the factor exp (—2uf,).

This concludes the derivation of the radiation condition
for the toroidal geometry, contained essentially in (37).

V. THE BENT DIELECTRIC ROD OR OPTICAL
FIBER

The analysis for a straight fiber has been given by,
among others, Kao [5] and Clarricoats [6]. A central
core, of size of the order of the wavelength, is surrounded
by a cylindrical cladding of much greater diameter. The
difference of dielectric constants is small, typical of the
order of a percent or so, and the field is vanishingly small
at the outer surface of the cladding. Although a refined
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calculation of the radiation due to bending would take
into account both the core-cladding and the cladding—
air interfaces, it seems probable that the major effect
would occur at the former. We therefore take the cladding
diameter infinite, and seek to apply the radiation con-
dition (37) at the surface of the core.

Because of the form taken by (37) it is necessary to
attend to the angular variable, and the resulting plane of
polarization. Remembering that E; corresponds to the
axial direction, we consider a field E; « cos n(¢ + a) =
Re exp [—in(¢ + )] where ¢ is used as a bicomplex
variable! (distinet from 7, which refers only to time vari-
ations; thus ¢ = —1, 2 = —1, but ¢4 # —1). Thus
exp (—jvp) K. [ko(v* — 1)V2] cos n(¥ + o) will be re-
placed by K, exp (—ina), with an implied factor
exp (—iny — iv¢). However, because of the form of (37),
we need first to write cosn (¥ + o) = cos ny cos na —
sin ny sin na. The radiation condition provides a coupling
(to first order) only to the cosine term, and, apart from
the other modes which are entrained (their effect is to
couple corresponding field components into the fiber),
will introduce a term I, cos ny cos na. More explicitly
we can put the relevant field terms in the form

E; = exp (—jve) {K,.(cos ny cos na — sin ny sin na)

+ oed, cos ny cos na}  (42)
where the argument of the Bessel functionsis ke (4% — 1)V2,
In complex form the right-hand side would be written as
[K. + o cos na exp (ina) I,] exp (—ina). Thus defining
Ona by

Sna = 06, €OS N exp (ina) (43)

we can treat 8., as the mode self-coupling coefficient for
radiation. It is implied that, in this way of treating the
problem, the (unspecified) amplitude of K,, apart from
the factor exp (—ina), is real in 7. Equation (42), via «,
thus determines the orientation of the field relative to the
plane of bending. The same interpretation applies,
mutatis mutandss, inside the fiber.

Following Clarricoats, but with p,¥,z in place of his
r,0,2, we can write, for the fields in the core,

E, = a.J,exp (—ina)

H, = buJnexp (—ing) (44)

with an implied factor exp (—iny — jk’s). Both a, and
b, are real (in 7). The argument of the Bessel functions is
Kp where K2 = w?u — k2, and ¢ is the core permittivity.
Two transverse components are needed for field matching,
and they can be conveniently taken as Hy and H,:

e )
= bo  €xp (—inB) — 124

K e J. exp (—ina)

H,

1 A discussion on the use of bicomplex variables will be found in
P. D. Crout, “The determination of antenna patterns of nm-arm
antennas by means of bicomplex functions,” IEEE Trans. Antennas
Propagat. (Commun.), vol. AP-18, pp. 686689, Sept. 1970.
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_ =¥
T K

ijnwe
K2p

H, bt exp (—ing) — O €xp (—ina).

(45)

Outside the core, analogously to (44) and (45) we get
E, = A.(K, + 8n0l) exp (—ina)
H, = B.(K, + 8.51,) exp (—1ing) (46)

ik'n

H, =
v K2p

B.[K, + 8.sl.] exp (—inB)

Jwee

-I—Kc

AJJK, + 8,.0,] exp (—ina)

y
H, = JI? BJLK. + 8usl,'] exp (—ing)

Jwe,

KZ2p

+ A K, + Suoln]exp (—ina) (47)

where the argument of the Bessel functions is K.p, and
Ay, B, are real (in 7). K, = (k2 — k2)'2, where k2 =
wlepo and ¢, 1s the cladding permittivity.

Equating E,, H,, H,, and H, at p = a, the core radius
gives, after some reduction,

k'nA (% + %) =exp [n(B — a) — 1(x/2)]

. [”’GF n oo Mn] (48)
Yy

22
A (En + %) = exp [ (8 — a) — i(7r/2)]

€

~ where z = Ka,y = K., A = b,/a, (real in 7), and

Fo(z) = 2J./(2) /T u(2)

———— A~ 1
Kot omdn UK, ( + yKK> (50)

and M,(y) is M,(y) with « replaced by 8.

From (48), since A is real, nf = na + mr + w/2,
whence it is seen that 8,, + 8.6 = e,0, independent of «
(field orientation).

Eliminating A from (48) and (49), and considering
the case € & ¢, 50 that k' &~ k. & k1, the resulting equation
can be written

M. (y) =y

[Fu(z) + No(y) P — [7;5/ <1 + g;)] ~0  (51)

where
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yK,'

Naw) = 22 1+

€,0 ]
yK.K,'|’
For HE, modes this simplifies to

xJ o () _ yK.(y) . €0
Jo1(z) Kaaly) [1 + YKo (y) Ko (y)

where the term in ¢ gives the effect of the rod’s curvature.
It is interesting that it does not depend on the field orien-
tation (angle &) with respect to the plane of bending.

Let 2 and y, be the solution of (52) when ¢ = 0.
Then a? + 32 = x? + yo = kla?[(e/e,) — 17, soif (52)
has the solution = z, + Az, y = yo + Ay, then zAz +
Yody = 0, and (52) gives, to first order,

A [ Jn + z[)t]n, _ th]an—II:I €0

|

x
Jn—l Jn—l !In-—l2 Kn—~12
Kn yOKnI yﬁKnKn—ll:,
A - . (53
+ v [Kn—l + Kn-—-l I<n—12 ( )
Putting Ay in terms of Az and solving gives
WO
Az 70 (54)

B (l'()Z + yOZ)KnKn—Z ’
In terms of a radiative correction AL’ to k' we get, since
b~k

Akl _ - 0’.’1)02€n

ky (k1) (e/e) — 11K Kns

(55)

(Note: Ko = Ky, for n < 2.) All terms in (55) are
positive, so, since o contaihs a factor 7, (55) gives the
attenuation.
Since 42 — 1 = (k"2 — k) /k? = yi/k?a? <K 1, the
expression for ¢ can be approximated by
172
T > . (56)

o R(j/4) exp [— iR (y0/k10)*] (m

Forn = 1 and yo small, K:(y0) ~ 1/yo and (55) becomes

Ak/ a 1/2
(—) ~ —j exp [ — Zk1Ro(yo/F1a) 3](7r_'>
kl n=1 RO

x02y01/2

" 2(ka)[(e/e) — 11"

The nearest formula in the literature to compare this to
appears to be Marcatili’s [1] approximate calculation for a
rectangular cross-section dielectric guide. It differs sub-
stantially in form, but the dominant part of the ex-
ponential is common to both. However, his approximation
would not be expected to hold too well, (because of the
omission of the external corner fields), if € & €, which is
the basis of the above formulas. There is also no term
R¢=/? in his equation. However, the exponential term is
so dominating in both formulas that, for weak radiation,
the differences are not very significant.

(57)
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As an example, (57) gives, for the attenuation per
radian, for the case ¢/e, = 1.02 and a = A,

R, = 1000\ attenuation = 0.4 neper/radian
R, = 2000\ attenuation = 0.01 neper/radian.

These figures are of the same order of magnitude as given
by Marcatali for the rectangular dielectric guide, but no
closer comparison is possible.

APPENDIX
SOURCE CURRENTS FOR THE TOROIDAL FIELD

The sources to support this field are currents at r = R,,
mainly filamentary multipoles on the torus axis. Their
form can be obtained by examining the difference between
the two expressions for H, with r > Ry and r < R, In
doing so we shall ignore the very small term in (41).
From (21) and (38) we get, with { = (u/€e)'?,

o0+78
CH, = —exp (—jvd) / cosh max

—o0— 78
-exp[ —jkp(y* — 1)¥2 sin ¢ sinh 2 JkR,T.2
I, (kRoT,) K.[k(Ro + p cos ¢) T, ] du,

r> Ro(or0 < ¢ < wn/2) (58)

w0+38
¢H, = —exp (—jvd) / cosh mx

——3b
cexp [ —7ko(42 — 1)2sin ¢ sinh ¢ — jmar |
“kRoT2{ L[k (Ro + p cos ) T. 1K, (kR T')
-I,(kRoT;) /I, (kRoT2) } da,

r < Relorwm/2 <y <m). (59)

Taking the difference of these expressions at ¢ = 7/2
gives the current density at » = R, Replacing p at ¢ =
7/2 by | z | (this form also covers negative z), we get

o+58
¢y = —exp (—jvo) / cosh max

—oo—35

cexp [—jk 12} (¥ — 1)2sinh z kR T2(1,/1,))

J[K, I, — exp (—jmm),K,'] dx (60)

where the argument of the Bessel functions is kRoT..
From the formula for the Wronskian, the expression in
square brackets is 1/kRoT, when m is even. We shall
examine this case first, also replacing 1,/I,” by its asymp-
totic form (for large R,) of T, sech z/ (% — 1)12:

oo+19
¢y ~ —exp (—jvo) / cosh maI'.2 sech x

— o028
cexp [—jk 2] (v2 — 1)12 sinh z](y? — 1)~ dg.
(61)

The factor cosh mz, for m even, can be expanded in even
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powers of sinh z. If we take (42 — 1)Y2 sinh z as a new
variable 4, we have a remaining factor I.2/(y? — 1)
cosh?x = 1 — 42/ (u2 4+ 42 — 1). To see how the formula
behaves we first take the simplest case m = 0. Then

Ty = —exp (—jvg) [ exp (k|| w)

72
. [1 - m] du. (62)

The integration of the first term gives 2#d(kz),
1.e., a current filament on the torus axis. The remaining
term gives a current of the form —my2(y?2 — 1)-0/™.
exp [—k|z]| (v* — 1)Y?], an attenuated current sheet
at r = R, By multiple differentiations of these forms with
respect to z we can get the corresponding forms when the
initial factor cosh maz is retained, leading to the afore-
mentioned current multipoles.

Although the multipole excitation was to be expected,
the presence of the current sheet seems to call for an
explanation. It is zero when vy = 0, although the formula
is presumably no longer valid in this range. It is large when
v is near 1, and this could be associated with ‘‘end-fire”
type radiation from the torus onto itself. It seems that, no
matter how large the torus radius is, this self-illumination
is present and affects the field distribution in the torus
vicinity. The particular combination of filament and
filamentary dipole which gives the factor (242 — 3) +
cosh 2z requires no current sheet, and gives the main
mode form (2y2 — 3)K, + K, cos 2¢. It is not immedi-
ately obvious what significance this combination may
have.

When m is odd. the two terms in square brackets in
(60) cancel, to first order. Clearly, a z-directed multiplet
is not needed in this case, and an examination of the
discontinuity in H, is required in the plane z = 0.

For r > Ry, H, takes the form
oo-+70

cosh mx sinh «

$H, = exp (~jub) sam () [

— 00— 78
cexp [—jk(y2 — 1)¥2| z | sinh z]
kRoT, I, (kR T.) K, (kRyT,) (2 — 1)1/2

cexp [—k(+* — 1)V2(r — Ry) cosh 2] dz. (63)

Because of the factor sgn (z), H, is not continuous at
z = 0 and the difference gives the current in the plane
z = 0. However, at z = 0 the integrand is antisymmetrical
and apparently gives zero on integration. The exception
could be at r = Ry when the exponential damping factor
is zero. Moreover, since E, is continuous at r = R, and
H, comes from dF;/dz, we can accommodate the region
r < Ro by writing | »r — R, | instead of (r — Ro) in (63).
This elearly gives the correct exponent according to (38)
when ¢ = x. (The factor exp (—7mx) also needs to be
included when r < R,.)
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Taking the limit for large Ry, we get
tH, = — 3(v¥* — 1) exp (—j»é) sgn (2)

078
. / cosh mz sinh z

= 0O~ 78
cexp { —k(y2 — 1)V2[|r — Ry|coshz +j|z|

-sinh ]} dx (64)

with an implied factor (—1) for r < R, when m is odd.
We consider the case m = 1, for which the above factor
can be written simply as sgn (r — Ry). Then

o078
¢H, = (1/2k) exp {—jv¢) sgn (z)c’)/arf sinh x

—co—jb
cexp {—k(v* — 1)[|r — Ry|cosha + j|z]|

-sinh 2]} dz. (65)

To find the value of the integral (which, by antisym-
metry, is zero when z = 0+ except at r = R,), integrate
with respect to r over a region including R,. Denoting the
integral by J we get

k(v — )12 [ Jdr

=+ ginh
= s — — 'k 2 1 12 o h
'[ w—js COsh = exp [—jk [ 2] (v )2 sinh 2] da

o508 o h

_ij AT G0k 2] (v2 — 1) sinh 2] dz.
o cosh z

(66)

The integration can now be performed by taking sinh z as
a new variable, and it gives
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[T dr = [x/jk(y* — D" Jexp [—k|z] (v* - 1)*].
(67)

Since J = 0, except at » = Ry, we can therefore take
J = [x/jk(¥* = 1)*]6(r — Ro) (68)

where z has now been taken to zero. Hence, from the
discontinuity in H, at z = 0 we get

Iy = [ja/sk*(y* — 1)**Texp (—jvp)d/0r[s(r — Ro) ].
(69)

This is a radially directed current doublet. Higher order
multiplets come from further differentiations with respect
to r, and correspond to larger values of m in (64).
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