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Radiation from Curved Dielectric Slabs and Fibers

LEONARD LEWIN, ASSOCIATE MEMBER, IEEE

Abstract—The form taken by the radiation condition in the local

coordinate system, pertinent to the determination by perturbation

methods of the radiation from curved radiating structures, is not

the same as it is at very great distances. Specifically, it may contain

a term that appears as if it were an incoming or growing wave. A

detailed analysis is made of the appropriate form of the condition

in cylindrical and toroidal systems, and is applied to the calculation

of radiation from curyed dielectric slabs and fibers.

I. INTRODUCTION

WITH the introduction of glass fiber as a communica-

tion medium, it became necessary to understand

and predict the radiation loss or leakage due to bending,

with a view both to finding methods of reducing or pre-

venting it, and to determining limits on bending for a

given loss.

Marcatili [1] investigated the effects of bending of a

dielectric slab in cylindrical coordinates using a method
that was basically rigorous, though depending” on mathe-

matical asymptotic expansions at a later stage. The same

method was applied to obtain an approximation to the

leakage from a bent light guide of rectangular cross section.

However, this process is not applicable to toroidal co-

ordinates and the curved dielectric fiber.
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One method of treating radiation from curved structures

is to attempt a perturbation analysis, treating the curva-

ture as a small perturbation to the straight configuration.

In so doing one is immediately concerned with matching

fields at the structure surface, and hence, with the form

of the radiation condition to be applied there. The dif-

ficulty arises from the fact that the perturbation analysis

presents the field in local coordinate form and the range

for which it is valid is limited to dimensions of the order

of the size of the structure-in the present case, the

bending radius. Since the radiation condition has to be

applied at “infinity,” i.e., at a distance much greater than

the bending radius, the local coordinate form is quite

useless. The radiation condition has to be inferred by an

indirect process before it can be applied. It needs to be

stressed that an “out ward-looking” wave in the local

coordinates is not necessarily (and in general, is not) the

appropriate form to satisfy the radiation condition at

very large distances. Thus the outgoing Hankel function

H,@J (kp) behaves like an outgoing wave when kp >> V,

but looks more like a sum of a growing and an evanescent

wave when lcp is small. To require only the evanescent

term would be erroneous.

Since the cylindrical coordinate solution can, in any

case, be set up rigorously, it might be asked what purpose

is served by first using it to determine the radiation con-

dition, and then applying thk condition to a perturbation

analysis. The advantage is threefold. It gives a better

insight into what is going on, and may therefore indicate

ways of controlling the radiation. Moreover, to get an
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analytic solution, asymptotic methods must in, any case (27rv)’1’JP(w) ~exp[–vj(z)](l –22)-(’14) (1)

be applied, and this is readily done in the perturbation
(27r~)’12Yv(w) =–2exp[+vf(z)]( l–z2)-(’14) (2)

solution whose development depends on just such an ex-

pansion. And finally, it points thewayto treating the far where

more difficult case of the optical fiber, for which no such
j(z) = tanh-’ (1 – z’) ‘1’ – (1 – z’) 112

solution exists. The natural coordinate system for the
(3)

curved fiber would be a toroidal system, but no convenient

solution of the Helmholtz equation exists there; neither is

there any equivalent of the known asymptotic expansion

of the Hankel function for that system.

We shall therefore briefly discuss the perturbation

solution for the curved dielectric slab, using the rigorous

formulation to get the radiation condition, and then

proceed to a determination of the local form of the radi-

ation condition in toroidal coordinates before solving the

curved optical fiber case by a perturbation method.

and z is less than unity.

If we take vz = kO(RO + y), withy << RO, we can expand

j(z) to first order about z, = kORO/V to obtain

—Vj(z) = —vf(koRo/v) + ~ (w — ?&) 1/2. (4)

Hence, for y less than – b/2, where only J, is needed, the

external field is represented solely by an evanescent wave,
as might have been anticipated. But for y > + b/2,

both J, and –.jY, are needed to give H,(’), and their

relative proportions are seen to be given by the combi-

nation
11. CURVED DIELECTRIC SLAB—RADIATION

CONDITIONS

Fig. 1 shows a dielectric slab of thickness b whose

axis is bent to a radius of curvature RO. The inner and

outer radii are RI = RO – b/2 and R’ = RO + b/2. A

cylindrical coordinate system p,o permits seeking solutions

varying as exp ( —iv@). Since @ = s/Ro, where s is the

axial coordinate, we can interpret v/Ro = k’ as the propa-

gation constant around the slab. A local coordinate y,

measuring position across a transverse section, is defined

by P = RO + y, so that field matching is performed at

boundaries at y = &b/2.

It is important to assess the order of magnitude of v.

If lco is the propagation constant of the empty space out-

side the dielectric, and e, is the relative dielectric constant

of the slab, then we expect it’ to lie between k. and kl =

lcoqll’, for the dominant mode. Since the field for P > RO +

b/2 will involve exp ( –jv@) H,(’) (kOp), we see that,

near the slab, kopjv w kORO/k’RO, which k of the order of,

but less than, unity. Similarly, for p < RO – b/2 the field

will involve exp ( –jv@)JV (kop). Inside the slab, both

J, (klp) and Y. (klp) are utilized. Since Ro, and hence v,

will be large for small curvatures, we shall be interested in

asymptotic expansions of Bessel functions with order of

the same magnitude as the argument. Specifically, for

P > R’ the field will involve H,(2J = J, – jY., while for

p < R1 the relevant form is J. only, since the field has to

be finite at p = O. Thus the field external to the slab takes

different forms according to which surface is involved.

Debye’s asymptotic expansions [2] can be put in the

form

*

Y
b

,,--
+

/

//’.,

RO

Fig. 1. Curved dielectric slab.

exp [–Y (k” – k02)112] + $. exp [–2Vj” (k&o/V)]

.exp [+ y(k” – k02)l/2]. (5)

Expression (5) is the equivalent of the radiation condition,

an outgoing wave at infinity, in local coordinate form. In

addition to the expected evanescent term there is a

(small) growing term. Of course, (5) is only valid for

a range of y limited by RO, so the growing term does not

grow indefinitely. But failure to include it in (5) neces-

sarily leads to errors, and in fact leads to a prediction of do

radiation at all! This is somewhat analogous to the use of a

sinusoidal approximation to the current on a linear

antenna, for which the examination of the corresponding

input impedance leads to the conclusion that the arrange-

ment is nonradiating. Nevertheless, by utilizing the

Poynting vector at infinity, a sensible first-order approx-

imation to the radiation can still be obtained, and Marcuse

[3] has performed the equivalent calculation for the

dielectric slab. Similarly to (5) he finds an asymptotic

expression for the Hankel function, but limited to only

the first decaying term; and4he relates this field form to

that in a straight slab. By comparison with known results

the amplitude of the field for a given power flow is thus

obtained. Then, by using the form of the Hankel function

for very large arguments, the far field, and hence, the

radiation from the slab, is deduced; and finally the

attenuation is found from the radiation and power flow.

This ingenious method does not require the growing

component of (5). But unfortunately the process cannot

be used for the curved fiber because of the absence of any

known corresponding solution to the wave equation in

toroidal coordinates.

III. CURVED DIELECTRIC SLAB—

PERTURBATION SOLUTION

As already mentioned, a rigorous solution is possible in

this case. If fields are derived from a magnetic component

H. = exp ( –jv@)J, (kop) for P < RI, with correspon~lng

forms for R1 < p < Rz and P > Rz, and the tangential
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field components arematchedatp = Rland R,, then the

following equation, which isessentially anequationforv,

can be derived:

Jv(?@I)J,’(kIR,) ‘6:12~Y(k@l)~:(&&)

J,(hR,)Yv’(kIRl) –c?12Jj(koRl)Y,(klR,)

H,(2J (k0R2)J.’ ( klRz) – CJ12J, (k1R2)H7f2J’ (koR2). (6)
H,(2) (koR2) Y,’(k1R2) – CJ12Y, (k1Rz)Hv(2)’(k0R2) “

The needed solutions are for v large and complex. There is

no known analytic solution to (6), though Marcatili used

asymptotic expansions to obtain an approximate solution

for small curvatures. Dang [4] has produced a computer

program for solving (6) numerically, based on a calcu-

lation of the Bessel functions through a numerical evalu-

ation of Hankel’s integrals. Since v will often involve

only a small imaginary part, very high accuracy in the

computations is necessary to calculate the attenuation

accurately. The results can be compared to the perturba-

tion solution, but differences may be dficult to interpret,

due to the limited accuracy of the numerical compu-

tations.

To obtain a perturbation solution we put

H. = exp ( –jk’s) H = exp ( –Ji’s) [Ho + H,/RO

+H,/Ro2+ “-”]

k’ = ko’[1 + B,b/Ro + “ ““] (7)

and define

@ = ~02E,— kou

82 = ~of2 – ~02

e = by/2. (8)

In local coordinate form the Helmholtz equation becomes

[( ) 1+ 1 + & 2k02(e,,l) – k’2 H = O (9)

where c, or 1 is taken, depending on whether or not the

field is being considered inside or outside the slab.

For the zero-order solution we get the equation

&HO
— + [k,, (e,)l) – k,’,]H, = O.

av2
(lo)

The solution, in the three regions, can be written

Ho = (COS o – A sin O) exp [6(v + 13/2)], y < –b/2

= cos -yy + A sin -yy, –b/2 < y < b/2

cos O+ Asin O——
l+K

+ Kexp [~(y –

where, from (5),

exp [–8(Y – b/2)]

b/2) ]], y > b/2 (11)

‘= -“exd’b-2R0b0’105?-’l

6 + k,’
– 2B1ko’b log —

}lCO “
(12)

The term in K in the third expression of (11) represents

the effect of the radiation condition, as applied to the

dielectric slab; in its absence, the present method yields

zero radiation. In the above forms, H, has been matched

at the two boundaries. The B1 term appears in (12)

because v = ko’ (Ro + bB1), to first order, and the contri-

bution is therefore O(1) if B, itself has a significant

magnitude.

The Et component is proportional to (l/c) (dH,/ay),

and on matching at y = &b/2 we get two further equa-

tions, from which the constant A can be eliminated to

yield the secular equation

tan20+tan0[(K – l)A+ (K + I)/A] – 1 = O (13)

with A = @/y.

For small K the solution of (13) corresponding to the

symmetrical mode in the straight slab is approximately

given by (1 + K) tan 0 = A. This equation can be

solved, for small K, in terms of the solution IcOO’correspond-

ing to K = O. It gives kot = lcOO’+ KL where

27(?602
L=>

e, – 1 “ (2+%,2 + kw’260b) koo’

and 70 and 80 come from writing lcoo’ for kO1 in

relation koo’ is the solution obtained from

tan (b70/2) = @o/yo.

(14)

(8). In this

(15)

In calculating K it is sufficient, to this order of accuracy,

to use & and TOin (12).

In order to complete the solution we need B1. As it

happens, B, turns out to be neglible, and it can be ignored

in (12), so that (14) does give ?cO’without more ado.

However, this feature is far from obvious, and there seems

to be no way of demonstrating it other than solving the

next higher order equation. This can be obtained from (9),

from a consideration of the coefficient of l/Ro, in the form

d2Hl - t)HO
— + [k02 (6,,1) – kO’2]H, =

3Y2
— + ICO’2HO(B1 – 2y) .

ay

(16)

The solution can be written

H, = cos o exp [6(Y + b/2) ][C + Y(B1 + k02/6k0’2)

–y2]ko’2/213, y < –b/2

= – (ko%J2@)y COS ~y + (ko’,/2y) (D +&y – y2)

. sin yy, –b/2 < y < b/2

= (COS0k{2/26) (exp [–~(y – b/2)]

. {y’ - y(B, – k02/8k0’2)] + F{exp [–8(Y – b/2)]

+ l?exp [ti(y – b/2)])), y > b/2 (17)
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with constants Bl, C, D, and F to be determined by match- “axial” fields are E@ and H+. The coordinates are inter-

ing Hz and E@ at the two boundaries. Use has been made related by

of the radiation condition in local form in determining the .z=Rcos O=psin#

form of the terms in C and F.

The calculation of B1 in this way is lengthy but straight-
r= Rsin O =RO+pcos#. (20)

forward, and gives B1 = KB where The space can be divided into the two regions r < RO and

B=
.wY[ ( 1 + X) (t? — XT2/ii2) + q3a2/ko’2]/4X

X[(q – 1) (C,ko’z –
(18)

~’) + K{~2 – c,(6, – l)kO’2)] + &’co’2(cr – 1) + K-y2]

and

Thus B1 contains a factor K, and since K exponentially

decreases with Ro, B1 approaches zero for large RO, and its

effect on (12) is usually negligible. Since v = k’Ro =

ko’ (R. + bB1) to first order in l/Ro, we get, to first order

in K and l/Ro,

k’ = koo’ + K (L + BkOO’b/RO) . (19)

L and B are given by. (14) and (18). To take the approxi-

mation further would be extremely tedious, but (19)

should be accurate, even for quite modest values of RO.

Thus with A. = 1 cm, b = 0.4 mm, e, = 4, and R. = i5b

the value of v is found as 21.06-jO.0001. The corresponding

value from Dang’s computation is 20.89-jO.00004. The real

parts are quite close, but the imaginary parts, which give

the attenuation, are too small to compare accurately.

A closer agreement is obtained with a very leaky second-

order mode with b = 0.8 mm and RO = 2b. The two values

are, respectively, 11.628-j5.064 and 12.410-j5. 139. For

comparison, the first-order mode in this case has the

imaginary parts of v calculated as 8. 10–5 and 5. 10–6, re-

spectively.

IV. RADIATION CONDITION FOR A TOROIDAL

STRUCTURE

Fig. 2 shows the toroidal geometry upon which three

different coordinate systems have been erected. Spherical

coordinates R,o,o are used in the investigation of the

behavior at infinity. Cylindrical coordinates r,q$z are

used to construct an exact and suitable solution to the

Hehnholtz equation. Local coordinates are P,*,s and

they approximate to cylindrical coordinates when the

radius of the torus RO is very large. Note that the “axial”

coordinate along the torus iss = Rwj, so that the relevant

z R

e
P

*r

Fig. 2. Toroidal coordinates.

r > Ro. In the inner region the field must be finite at r = 0.

In the outer region the field should look like an outgoing

wave as r ~ m. Outward going waves in the *Z direction

imp] y sources at z = O, so that forms like exp ( –j~ \ z I)

will be involved in setting up solutions. The outer region

can therefore be considered by restricting # to the range

O to 7r/2, since the symmetry due to the use of I z I will

cover the —r/2 to O range. Our aim is to develop a field

which satisfies Maxwell’s equations, behaves correctly at

infinity and at the origin, and which can be developed

on the torus to give a dominant term of the form

exp ( —jk’s) K~[lcp (Y2 — 1)112] cos m+, this being the

form of solution for a straight cylinder. Any “correction”

terms to this form will be interpreted as the local structure

of the radiation condition, in much the same way as was

done for the extra term in (5).

We make the following definitions and observations:

k propagation coefficient in the space outside the

torus;

k’ propagation coefficient around the torus (k’ > k

for a wave on a dielectric rod);

v = kfRo, giving v~ = lets. As RO * ~ ,V - w;

~ = k’/k > 1, r = (1 – lj~z)llz, (y – 1)112 =
I -y2– 1 [lIZ exp (–jd) with ~ > O;

@ = sinh-1 (Y2 – 1)-fl/2j, @ = & + j&, giving tan @i =

tan 6 tanh &, whence OC<6.

From the form of the solution to the wave equation in

cylindrical coordinates, we can build up a field which

satisfies the Helmholtz equation and which is suitable to

represent conditions in the toroidal geometry. After a

considerable amount of searching the following structure

was developed:

E+ = – exp ( –jvr#) ~“+” cosh mx
—W—18

- exp [– jkp (72 – 1)1/2 sin+ sinh z]

.kROI’.l. (kRoI’.)K[k[k (RO + P COS i) r.] @

0< + < 7/2 (21)

where

r. = [(72 – 1) sinh2 z – 1]112.

This form is based on the spectral component exp ( –j@) “

exp [– jp I z I ]H.f2J’ [r (?c2 — IJ2) 1’2], in which various

changes of variables, including those in (20), have been
made. The various functions that appear in (21) have



722 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JULY 1974

been chosen togive an outgoing wave at infinity, andan

appropriate field at the torus, as will be demonstrated in

the ensuing paragraphs.

The contour of integration is shown in Fig. 3(a).

The integrand possesses branch cuts at r% = O, or x =

* p.

In order to demonstrate that (21) represents an out-

going wave, we transform to spherical coordinates, using

(20), and take a new variable defined by (72 – 1) ‘/’

sinh x = —.i sinh y. Near the origin this gives y w

j(-y2 – l)lIZZ. Since arg (-f2 – 1)1/2 = –3, we get y =

* ( – m + j7r/2) at z = + ( ~ + j$), and the contour

for y becomes as shown in Fig. 3(b). The branch cuts are

at y = & ~r/2 and are not encountered. Equation (21)

becomes

/

c.a-jT/2

E+ = – exp ( –jv@) exp ( – kR cos 0 sinh y)
–m+jr12

.HVW’(kR sin o cosh y)J, (kRo cosh V)

“ ~wkRo cosh2 y cosh mx/2(+ – 1) ’12cosh x] dy.

(22)

For large R we can approximate the Hankel function by

exp { —j~lcR sin 0 cosh y — v7r/2 – 2r/4] } (2/7riiR sin 0

cosh y) 1/2. The variable part of the total exponent is thus

– jlcR[cosh y sin e – j sinh y cos 0] = – jkR cosh (y +

je – jr/2). Since O < 0 < Ir/2 in the region considered,

we can move they contour to run horizontally through the

point j (7r/2 – e), and on writing y’ = y + jo – ~r/2 we

get the modified exponent –jlcR cosh y’. For large R the

method of stationary phase gives its contribution from

integration at y! = O, and with the factor R–~112~ already

derived from the Hankel function we get a total variation

with R of the form exp ( —jlcR) /R. This verifies the out-

ward-going character of (21) at infinity. It remains to

find its form in the neighborhood of the torus.

Lemma: Let v be large, z and b finite, and let a function

F,(z) possess the asymptotic expansion, for large v:

F,(vz) = exp [v~(z) + g(z) ]{1 + ~
()1

+0:. (23)

Then using Taylor’s expansion we get

F.(II2 + b.z)

F,(vz)

[

bzg’(z) + b2z2j” (Z) /2
= exp [bzf’(z) ] 1 +

()}
+0; .

v

(24)

Take F. (VZ) = – (2v/7r) 112K,’ (vz) and use Debye’s ex-

pansion [2] for which

1 + (1 + Z2)112
f(z) = log – (1 + 22)1/2

z

+

(a)

+=

J17/2

- J??/2

(b)

Fig. 3. (a) Contour of integration for z. (b) Contour of
integration for y.

g(2) = (1/4) log (1 + 22) – log z.

Then

~P’(vZ + bz)

Kv’ (vZ)

{[

1
= exp[–b(l +22)1/2] 1 +!

2V (1 + z2)1/2

-bn:)l+ow (25)

The term in l/v is finite and approaches zero as v -+ co.

It will be ignored here, since we are only interested in

results for large v.

In a similar way we get

~;(V~ + by)/J,’(vy) - exp [b(l — Y2)112], yz<l

Y,’(vy + by)/Y,’(vy) ~exp [—b(l — #2)112], yz < 1.

(26)

Also,

‘% N $ exp [—%f(Y)l (27)
v

where

f(y) = tard-l (1 – yz) 112– (1 _ Y2)1120 (28)

And finally we have

Ku’(vz)Iv(vz) x – 1/2vz, Z >0

Y:(vy)J,(vy) = l/Tvy, y<l. (29)

It follows from these results that for z real we have

‘-zzI, (w) K,’(vz + bz) x ~ exp [—b(l + Z2)112]. (30)

But for z imaginary = jy, we use
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K,’( jg) = – ~ exp (–jmr/2)Hyt2J’(y)
point calculation around x = O is sufficient and yields, on

. expanding the remaining exponent as a sum of modified

Bessel functions:
and get

+ ~j exp [–2v.f(v)] exp [b(l – yz)’l’]). (31)
o

It will be noticed that the first term is just the continu-
m

.exp [—2~(tanh—l r — I’)] ~ cosh mx
ation of the function in (30) for imaginary z. The second

term is aclditional, and only appears in that part of the

range of z for which z is imaginary. As we shall see, its

“exp(-=,) ‘:
dx N ( j/4) j dn[lcp(~’ – 1)’/’]

effect is to give inward or growing waves in the local

coordinate system.

In (21), take vz = kROr~, bz = p cos Vrfi. Then z is . cos n+ exp [ —% (tanh—l 17 — I’) ] (m/kRo) 1’2

real for X2 > @z,and imaginary for X2 <62. Applying (31) . (72 – 1)-(3/4) (35)
to (21) we get, for large Ro,

where q = 1, en = 2 for n > 0.

/

m+36
E@ = E, + E,= ~ exp ( –jv@)

If instead of cosh mx we had used j sinh w~z, we would
cosh ‘W~X

—w——,8 have gotten E, = O, to order l/v, for the corresponding.-

.exp [—kp(~z — 1)112 (cosh z cos #
integral.

Define the small quantity u by

+ ~ sinh x sin #) ] dz + ( j/4) exp ( –jv@) u = ( ji4) exp { —2kR0[T tanh–l (1 — 1/~2) 1’2

/

D
. cosh mx exp [kp (Y2 — 1) 112(cosh x cos ~ —

–b

–j sinh x sin ~) ] exp ( – 2vj.) dx (32)

where

j. = tanh-l (r cosh z) – I’ cosh X, r = (1 – l/-f2)’/2.

El can be evaluated by noting that the exponent can be

written as cosh (x + j~), and if we take z + j~ = u the

integral becomes

E, = ~ exp ( –jvo) ~m+’(’’+’) cosh [m(u – j~) ]
—M+j($—o

“exp [–kp(-y2 – 1)112cosh u] du. (33)

Since arg (72 – 1)112 = – 6, the integrand is convergent

at both limits for O < ~ < 7r/2. Moreover, (33) has no

singularities so the contour can be displaced to the real

u axis. Hence,

J
.

E, = ~ exp ( –jvd) (cosh mu cos m+ – j sinh mu
—m

*sin nuj) exp [—kp(y2 — 1) 112cosh u] du

= exp ( –jxj) K~[kp (72 – 1) 112]cos m*. (34)

To within terms of order l/v = (k’Ro)’1 this is the struc-

ture to be expected, and justifies the form chosen for the

various factors used in setting up (21).

Had j sinh mx been used instead of cosh wzx, cos m+ in
(34) would have been replaced by sin m#.

It remains to examine the form of E2, and it is seen from

(32) that the integrand is completely dominated by the

term exp ( – 2vfz), which has its greatest value when

jt is a minimum, which occurs at x = O. Elsewhere it de-

creases rapidly, to zero at the limits. Hence, a saddle

()(72 – 1)1/2]] &o 1’2(72 – 1)-(3/4) (36)

Then the local form of the field component Ed (the same

holds for Ho) is

1) exp ( –jvf$) K~[lCp(T2 – 1)1/2] sin m* + aO(v-’)

~) exp ( –jvo) { Km[kP (72 – 1)112] cos w2*

+ u : &In[kp(@ – 1) ‘/2] Cos nv] . (37)
o

The radiation condition therefore gives, to this order of

approximation, no additional term for modes odd in +.

For modes symmetrical about + = O it is seen that the

radiation condition involves not only an 1~ term of

magnitude u~~, but also a train of coupled modes; in much

the same way as a propagating mode on a periodic struc-

ture is accompanied by a set of spatial harmonics, all

propagating together with the phase of the main mode.
The field forms considered so far have been limited to

O < * < 7r/2. Inside the cylinder r = RO we require a form

that is finite at the origin, and gives E+ continuous at

4 = r/2. By inspection we get, as a dominant contribu-

tion,

/

Cc+ia

E@ = – exp ( –jvc#) Cosh Wtz
—w—j8

. exp [ —jkp (Y2 — 1)112sin * sinh x — @~_JlcR#~

- {Iv’[k (Ro + p Cos +) rm]~,’ (WA)

. I, (kRorJ /1,’ (kRors) 1 d~, 7r/2 < # < n-. (38)

It is clear, from comparison with (21), that E+ is contin--

uous at * = 7/2, since they both reduce to the same ex-

pression when m is even. When m is odd the continuity
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is not so obvious, and to demonstrate it, and also to show

why the factor exp ( —jmr) is included in (38), we con-

sider the equivalent to (32) and (33). We get, analo-

gously to (33),

.exp [—kp(y2 – 1)112cosh u — jm~] du. (39)

Since, now, (~ – ~) lies between O and 7r/2, we get the

same result as (34) ; and this is what is required, since the

full range of $ must be covered. When m is odd the two

fields are each zero at ~ = 7r/2, from (34), so that con-

tinuity is in any case maintained in this case too. The

formula for Ez becomes, for r < R,,

.exp [kp(~z – 1) l/2[cosh x cos # – j sinh x sin ~]

– jmw] exp ( – 2vfZ) d.z. (40)

This contribution comes via the term in K,’ in (38), since

it is replaced by the H.(a)’ form in this range. When com-

bined with the exponent from the first lV’ function, (40)

is obtained, and agrees with (32) for m even. For m odd

(40) is of the wrong sign, and hence, for continuity, a

small additional term & needs to be added to (38). Its

value is found to be

/

8
E2= –j+(cos m~ – 1) exp ( –jv~) cosh mx

–6

calculation of the radiation due to bending would take

into account both the core–cladding and the cladding–

air interfaces, it seems probable that the major effect

would occur at the former. We therefore take the cladding

diameter infinite, and seek to apply the radiation con-

dition (37) at the surface of the core.

Because of the form taken by (37) it is necessary to

attend to the angular variable, and the resulting plane of

polarization. Remembering that E@ corresponds to the

axial direction, we consider a field Es ~ cos n (4 + a) =

Re exp [– in (1 + a)] where i is used as a bicomplex

variablel (distinct from j, which refers only to time vari-

ations; thus i2 = —1, jz = —1, but ij # —l). Thus

exp ( —jz@) Kn[kp (72 — 1) lIz] cos n (1 + a) will be re-

placed by K. exp ( – ins), with an implied factor

exp ( –imj – in$). However, because of the form of (37),

we need first to write cos n (+ + a) = cos n+ cos na —

sin n+ sin na. The radiation condition provides a coupling

(to first order) only to the cosine term, and, apart from

the other modes which are entrained (their effect is to

couple corresponding field components into the fiber),

will introduce a term 1. cos n~ cos na. More explicitly

we can put the relevant field terms in the form

E, = exp ( – jv~) {K. (COS n~ cos na – sin nx sin na)

where the argument of the Bessel functions is kp (T2 – 1)1/2.

In complex form the right-hand side would be written as

[K. + u cos na exp (ins) I.] exp ( – ins). Thus defining

?imaby

. exp [ –jkp (72 — 1) 112sin * sinh x] 8am= UC. cos na exp (incr) (43)

where

i7z = [1 – (72 – 1) sinh2 Z]llz.

Note that it is always possible to add a term of thk

character, since it is finite at the origin; hence, a unique

radiation condition at the torus cannot be found from a

consideration of fields in r < Ro. But for r > R. the radi-

ation condition at infinity uniquely gives (32). The need

for the term in (41) then follows in order to match at

* = 7r/2. Its value is, of course, very small, since the
asymptotic expansion of J,’J, gives the factor exp ( – 2vfz).

This concludes the derivation of the radiation condition

for the toroidal geometry, contained essentially in (37).

V. THE BENT DIELECTRIC ROD OR OPTICAL
FIBER

The analysis for a straight fiber has been given by,

among others, Kao [5] and Clarricoats [6]. A central

core, of size of the order of the wavelength, is surrounded

by a cylindrical cladding of much greater diameter. The

difference of dielectric constants is small, typical of the

order of a percent or so, and the field is vanishingly small

at the outer surface of the cladding. Although a refined

we can treat 6.. as the mode self-coupling coefficient for

radiation. It is implied that, in this way of treating the

problem, the (unspecified) amplitude of Kn, apart from

the factor exp ( – ins), is real in i. Equation (42), via a,

thus determines the orientation of the field relative to the

plane of bending. The same interpretation applies,

mutatis mutandis, inside the fiber.

Following Clarricoats, but with p,~,z in place of his

r,13,z, we can write, for the fields in the core,

E, = afiJn exp ( – ins)

H, = bnJn exp ( –inb) (44)

with an implied factor exp ( —inv — jk’s). Both an and

bn are real (in i). The argument of the Bessel functions is

Kp where K2 = W2CM – k’2, and e is the core permittivity.

Two transverse components are needed for field matching,

and they can be conveniently taken as H+ and HP:

tj%’n
— bnJn exp ( – inp) – ~% J.’ exp ( – ins)H+ = K,p

1 A discussion on the use of bicomplex variables will be found in
P. D. Grout, “The determination of antenna patterns of n-arm
antennas by means of bicomplex functions, ” IEEE Trans. Antennm
Propagat. (Commun.), vol. AP-18, pp. 686489, Sept. 1970.
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lip =+’ bnJn’ .,. (-inL?) - !&J. exp (-in.).
[ 1m(u)=% 1+= .

n

(45) For HE% modes this simplifies to

Outside the core, analogously to (44) and (45) we get

E, = 14n(Kn + 6nti1n) exp ( –ins)

H, = B.(K. + &@In) exp ( –in~)
where the term in u gives the effect of the rod’s curvature.

’46) It is interesting that it does not depend on the field orien-

ijk’n
tation (angle a) with respect to the plane of bending.

— Bn[Kn + &$In] exp ( – inp)H+ = – K2P Let w and yO be the solution of (52) when a = O.

2 – k,2a2[(e/e.) — 1], so if (52)Then X2 + yz = ZOZ+ yO –

has the solution x = x, + Ax, y = yO + Ay, then XOAX+

+3% A.[K.’ + 6..1.’] exp ( –ins) yoAy = O, and (52) gives, to first order,
c

H, =33 Bfi[K.’ + 6.81.’] exp ( –z@)
[

J.
Ax

xJn’ xJnJn_lt

l–

6nu
—+—
Jfi_l Jn_l – J.-12 = K._ll

n,

[

yoK.’
+Ay $+=–

yoK.Km_l’ 1K.-12 “
(53)

*C A~[K~ + &~I~] exp ( –ins) (47)
+ K2p

n n

Putting Ay in terms of Ax and solving gives

where the argument of the Bessel functions is KCp, and

An, B. are real (in i). KC = (W – k~)112, where ii? =
.snuxll

(54)
‘x = (xol + VO2)KnKn-Z “

W2WLOand e. is the cladding permittivit y.

Equating E,, H,, HP, and H+ at p = a, the core radius In terms of a radiative correction Ale’ to k’ we get, since

gives, after some reduction, k’ w kl % kc,

Ak’ — Uxo%
—=
h (kla) ‘[(e/eO) – l]KnK._l “

(55)

[

weFm

1

(Note: K.-z = K,_. for n < 2.) All terms in (.55) are

. ~+;M. (48) positive, so, since u contains a factor ~, (.55) gives the

attenuation.

r an)

Since V2 – 1 = (lc’1 – k?) /lcl’ = y02/lc12a2 << 1, the

lc’A ~ + ~ = exp [in(@ – a) – i(7r/2)] expression for u can be approximated by

( )
1/2

[1
u=(j/4)exp [— $%J?o(yO/kla) 3] klRo(y~,kla) ~ . (56)

. ~ + ~ rw (49)

For n = 1 and y. small, KI (yo) N I/y. and (55) becomes

where z = Ku, y = KCa, A = bn/an (real in i), and

(-)

Ak’ 7ra ’12

Ffi(z) = zJ.’(z)/J. (z) kl ()
x –j exp [– 3clRo(yo/ha) 31 ~.

n=l

and ~n (y) is M.(y) with a replaced by 6.

From (48), since A is real, n~ = rm + ntr + 7r/2,

whence it is seen that 8.. + 6.P = c.u, independent of a

(field orientation).

Eliminating A from (48) and (49), and considering

the case e ~ e., so that k’ m Ice ~ k,, the resulting equation

can be written

‘F(z) ‘Nn(dw+$)bo’51)
where

Xolyolll

“ 2(k1a)3[(6/ec) – 1] “
(57)

The nearest formula in the literature to compare this to

appears to be Marcatili’s [1] approximate calculation for a

rectangular. cross-section dielectric guide. It differs sub-

stantially in form, but the dominant part of the ex-

ponential is common to both. ~owever, his approximation
would not be expected to hold too well, (because of the

omission of the external corner fields), if c = e., which is

the basis of the above formulas. There is also no term

RO–[’[2) in his equation. However, the exponential term is

so dominating in both formulas that, for weak radiation,

the differences are not very significant.
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As an example, (57), gives, for the attenuation

radian, for the case e/cc = 1.02 and a = k,

RO = 1000A attenuation = 0.4neper/radian

RO = 2000k attenuation = O.Olneper/radian.

IEEE

per

These figures are of the same order of magnitude as given

by Marcatali for the rectangular dielectric guide, but no

closer comparison is possible.

APPENDIX

SOURCE CURRENTS FOR THE TOROIDAL FIELD

The sources to support this field are currents at r = RO,

mainly filamentary multiples on the torus axis. Their

form can be obtained by examining the difference between

the two expressions for H, with r > RO and r < RO. In

doing so we shall ignore the very small term in (41).

From (21) and (38) we get, with { = (p/e) 112,

\

w+J6

{HZ = – exp ( –j.~) cosh nm
—W—$t

“ exp[ —jkp (72 — 1)112sin* sinh z]kR&z2

“1, (kRO17JK.[k (Ro + P cos 4) r..] dz,

r > RO(or O < + < 2r/2) (58)

[H, = -exp ( -j.@) /“+” cosh mz
—m—j6

. exp [ – jkp (72 – 1)112sin 1 sinh x – jmr]

. kRorx2{l,[k(Ro + p cos y) I?JK,’ (kRor.)

.IV(J%RJ’J /Iv’ (kRor.) } Ckc,

r < RO(or 7r/2 <4< m). (59)

Taking the difference of these expressions at ~ = 7r/2

gives the current density at r = RO. Replacing p at 1# =

2r/2 by I z I (this form also covers negative z), we get

\

‘W+J6
flb = –exp ( –j@) cosh mx

—W—16

. exp [– jk I z I (T2 – 1)112sinh x]kRJ_’~2 (1,/1,’)

. [KVI,’ – exp ( –jm=)I,K,’] dx (60)

where the argument of the Bessel functions is kROI’z.

From the formula for the Wronskian, the expression in

square brackets is l/kRd’~ when m k even. We shall

examine this case first, also replacing 1,/1.’ by its asymp-

totic form (for large Ro) of r. sech x/(72 – 1) ‘/2:

(I, M –exp ( -j.@) ~w+” cosh mxI’.z sech x
—co—$.3

.exp [—~”k I z I (~z — 1)112sinh Z] (72 — 1)—(112)dx,

(61)

The factor cosh mx, for m even, can be expanded in even
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powers of sinh z, If we take (72 – 1)1/2 sinh x as a new

variable u, we have a remaining factor I’m2/ (-y2 – 1)

cosh2 x = 1 — -y2/ (U2 + 72 — 1). To see how the formula

behaves we first take the simplest case m = O. Then

/

m
~l,j = – exp ( –jvfb) exp(–jklzlu)

—m

[
. 1– 72 1du. (62)

zP+-f2-l

The integration of the first term gives 2T~ ( kz),

i.e., a current filament on the torus axis. The remaining

term gives a current of the form – my2(Y2 – 1) ‘(112).

exp [— lC I z I (-Y2 — 1)1/2], an attenuated current sheet

at r = Ro. By multiple differentiations of these forms with

respect to z we can get the corresponding forms when the

initial factor cosh mx is retained, leading to the afore-

mentioned current multiples.

Although the multipole excitation was to be expected,

the presence of the current sheet seems to call for an

explanation. It is zero when ~ = O, although the formula

is presumably no longer valid in this range. It is large when

y is near 1, and this could be associated with “end-fire”

type radiation from the torus onto itself. It seems that, no

matter how large the torus radius is, this self-illumination

is present and affects the field distribution in the torus

vicinity. The particular combination of filament and

filamentary dipole which gives the factor (2Y2 – 3) +

cosh 2x requires no current sheet, and gives the main

mode form (272 — 3) Ko + K2 cos 24. It is not immedi-

ately obvious what significance this combination may

have.

When m is odd. the two terms in square brackets in

(60) cancel, to first order. Clearly, a z-directed multiplet

is not needed in this case, and an examination of the

discontinuity in H, is required in the plane z = O.

For r > Ro, H, takes the form

~H. = exp ( -j.d) sgn (z) ~“+” cosh mx sinh x
—m—j~

“exp [–jk(y2 – 1)112 I z I sinhz]

,kROrzI,(lcROr.)K;(kRorX) (Y2 – 1)112

.exp [–k(-#’ – 1)1/2(r – Ro) cosh z] dx. (63)

Because of the factor sgn (z), H, is not continuous at

z = O and the difference gives the current in the plane

z = O. However, at z = O the integrand is antisymmetrical

and apparently gives zero on integration. The exception

could be at r = R. when the exponential damping factor

is zero. Moreover, since E+ is continuous at r = R. and

H, comes from dE+/&, we can accommodate the region
r < R. by writing I r – R. I instead of (r – Ro) in (63).

This clearly gives the correct exponent according to (38)

when ~ = m. (The factor exp ( —jnm) also needs to be
included when r < Ro. )



LEwIN : RADIATION FROM SLABS AND FIBERS

Taking the limit for large R. we get

~Zl, = – *(+ – 1) ’12exp ( –j+) sgn (z)

/

.n+i8
. cosh mx sinh x

- m- j“13

“exp {–k(-y2 – 1) ’12[lr – ROlcoshz+jlz I

. sinh x]} dx (64)

with an implied factor ( – 1) for r < RO when m is odd.

We consider the case m = 1, for which the above factor

can be written simply as sgn (r — Ro). Then

!

8a-tj~
tn. = (1/2k) exp ( –jv@) sgn (z) alar sinh x

—co—j8

“exp {–k(v2 – l)112[Jr – RO\ coshx+jlzl

Qsinh z]) dx. (65)

To find the value of the integral (which, by antisym-

metry, is zero when z = O+ except at r = Ro), integrate

with respect to r over a region including Ro. Denoting the

integral by J we get

k(# – 1)1/’ f.Jdr

/

‘+ja sinh x. —– exp [–j% I z I (72 – 1)112sinh z]dx
_W_36cosh X

/

$a+j~ sin h ~

= –2j —–sin[k I z \ (72 — l)112sinhz]dx.
o cosh X

(66)

The integration can now be performed by taking sinh x as

a new variable, and it gives

727

fJdr = [T/jk(T2 – 1)112] exp [–k I z \ (72 – 1) ’12].

(67)

Since J = O, except at r = Ro, we can therefore take

J = [7r/jk(T2 – 1) 1/2]8(r – Ro) (68)

where z has now been taken to zero. Hence, from the

discontinuity in H. at z = Owe get

I+ = [jT/fk2 (TZ – 1)112] exp ( –jv@) d/8r[6(r – Ro) ].

(69)

This is a radially directed current doublet. Higher order

rnultiplets come from further differentiations with respect

to r, and correspond to larger values of m in (64).
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